Ancient Egyptian Mathematics Lesson 3:
 Approximations and Operations

Egyptian Faience w3d William the Hippopotamus from the Met

Approximation

Ancient Egyptian Mathematics

Consider the length measurement system given below where each part corresponds to a unit length:

Estimate the following lengths:

\square

Approximation

Ancient Egyptian Mathematics

Consider the length measurement system given below where each part corresponds to a unit length:

Estimate the following lengths:

\square

Approximation

Ancient Egyptian Mathematics

Consider the length measurement system given below
where each part corresponds to a unit length:

Estimate the following lengths:
\square

A natural way of approximating a length is to introduce the same concept as pesu from our discussion of bread loaves: the number of constituents within a single unit length

Approximation

Ancient Egyptian Mathematics

Consider the length measurement system given below where each part corresponds to a unit length:

Estimate the following lengths:

3

Egyptian Fractions

Ancient Egyptian Mathematics

Our Decimal System:

Egyptian System:

$\overline{10} \overline{9} \overline{8} \overline{7} 6 \overline{5} \quad \overline{4} \quad \overline{3} \quad \overline{2} \quad \overline{3}$

The significant difference is that the Egyptian system is based off pesu, meaning the length of a single sublength of a higher pesu necessarily becomes smaller. The decimal system has constant spacing: 0.2-0.1 $=0.3-0.2=0.4$ -$0.3=\ldots=1-0.9$ but the Egyptian system has $\overline{2}-\overline{3}>\overline{3}-\overline{4}>\overline{4}-\overline{5}$.. This has implications for the accuracy of measurements

Egyptian Fractions

Ancient Egyptian Mathematics

Our Decimal System:

Egyptian System:

The accuracy of measurements is determined by the spacing since intermediary results are rounded down to the greatest portion they contain. The spacing is constant in the decimal system meaning that for the marked measurement, you would be forced to go down to 0.1 but clearly $\overline{7}$ is a more accurate approximation. The Egyptian fraction approximation tends to be more accurate than the decimal system approximation for small numbers.

Egyptian Fractions

Ancient Egyptian Mathematics

Our Decimal System:

Egyptian System:

But for this marking, the decimal approximation of 0.8 is more accurate than $\overline{\overline{3}}$.
The Egyptian fraction approximation tends to be less accurate than the decimal system approximation for larger numbers.
Ostraca Tablets: Why would it be helpful to have increased measurement accuracy for small numbers near 0 ? Is it worth the poor accuracy near 1 ?

Analogous to how multiplication by 2 is well-defined in
Egyptian, we also have natural ways to multiply by $\overline{2}$ and $\overline{\overline{3}}$
Multiplication by $\overline{2}$
If \mathbf{n} is even, $\mathrm{n} \times \overline{2}$ is the number that when collected with itself gives n. Example: $6 \times \overline{2}=3$ since $2 \times 3=3+3=6$. If n is odd, $\mathrm{n} \times \overline{2}$ is the sum of $\overline{2}$ and the number that when collected with itself gives $n-1$. Example: $7 \times \overline{2}=3 \overline{2}$ since $2 \times 3=3+3=6$ and $6+1=7$.

Ostraca Practice! $8 \times \overline{2}, 13 \times \overline{2}, 2 \times \overline{2}$

Analogous to how multiplication by 2 is well-defined in
Egyptian, we also have natural ways to multiply by $\overline{2}$ and $\overline{\overline{3}}$
Multiplication by $\overline{\overline{3}}$
If n is a multiple of $3, n \times \overline{\overline{3}}$ is given as the number m collected with itself where m is the number than when collected with itself and then collected with m again yields n . Example: $9 \times \overline{\overline{3}}=6$ since we find that $\mathrm{m}=3$ because $2 \times 3=3+3=6$ and then $6+3=9=n$. Then $9 \times \overline{\overline{3}}=2 \times m=m+m=3+3=6$

Analogous to how multiplication by 2 is well-defined in
Egyptian, we also have natural ways to multiply by $\overline{2}$ and $\overline{\overline{3}}$
Multiplication by $\overline{\overline{3}}$
If n is one more than a multiple of 3 (congruent to $1 \bmod 3$), $\mathrm{n} \times \overline{\overline{3}}$ is given as the number m collected with itself collected with $\overline{\overline{3}}$ where m is the number than when collected with itself and then collected with m again yields $\mathrm{n}-1$.
Example: $10 \times \overline{\overline{3}}=6 \overline{\overline{3}}$ since we find that $m=3$ because $2 \times 3=3+3=6$ and then $6+3=9$ and $9+1=10=n$. Then $10 \times \overline{\overline{3}}=2 \times m+\overline{\overline{3}}=m+m+\overline{\overline{3}}=3+3+\overline{\overline{3}}=6 \overline{\overline{3}}$

Analogous to how multiplication by 2 is well-defined in
Egyptian, we also have natural ways to multiply by $\overline{2}$ and $\overline{\overline{3}}$
Multiplication by $\overline{\overline{3}}$
If n is two more than a multiple of 3 (congruent to $2 \bmod 3$), $\mathrm{n} \times \overline{\overline{3}}$ is given as the number m collected with itself collected with $1 \overline{3}$ where m is the number than when collected with itself and then collected with m again yields $\mathrm{n}-2$.
Example: $11 \times \overline{\overline{3}}=7 \overline{3}$ since we find that $m=3$ because $2 \times 3=3+3=6$ and then $6+3=9$ and $9+2=11=n$. Then $11 \times \overline{\overline{3}}=2 \times m+1 \overline{3}=m+m+1 \overline{3}=3+3+1 \overline{3}=7 \overline{3}$

Tabular Multiplication and Division

12

1	4	
2	8	
4	16	\checkmark Use
8	32	\checkmark Use
	48	
	$\mathbf{1 2}$	
1	4	\checkmark Use
2	8	\checkmark Use
4	16	
8	32	

3

Tabular Multiplication and Division

Problem: "divide 81 by 6"

	$\mathbf{8 1}$		81	
1	6	\checkmark Use	$\overline{2}$	3
	12		1	6
	\checkmark Use			
	24	\checkmark Use	2	12
8	48	\checkmark Use	4	24
13	$\mathbf{7 8}$		8	48
			$\mathbf{1 3} \overline{\mathbf{2}}$	

Tabular Multiplication and Division

Ancient Egyptian Mathematics
Lesson 3: Approximations and Operations

Problem: "divide 18 by 8" Problem: "divide 19 by 3"

	18		19	19	
$\overline{4}$	$2 \checkmark$ Use	$\overline{4}$	$\overline{2} \overline{4} \checkmark$ Use	$\overline{16}$	$\overline{8} \overline{16} \quad \mathrm{r}$ Use
$\overline{2}$	4	2	12	$\overline{8}$	$\overline{4} \overline{8}$
1	8	1	3	$\overline{4}$	$\overline{2} \overline{4} \checkmark$ Use
2	$16 \checkmark$ Use	2	$6 \checkmark$ Use		
$2 \overline{4}$		4	$12 \checkmark$ Use	$\overline{2}$	$1 \overline{2}$
			$18 \overline{2} \overline{4}$	1	3
				2	$6 \checkmark$ Use
				4	$12 \checkmark$ Use
					$\overline{2} \overline{4} \overline{8} \overline{16}$

Tabular Multiplication and Division

Ancient Egyptian Mathematics Lesson 3: Approximations and Operations

Problem: "divide 19 by 3" Problem: "divide 20 by 3"

$\Delta 8 \sim \square$
 \rightarrow 人

grh $p w$
"It is
the end" šms hrw nfr
"Follow a good day"

